THE AMAZING “BUG” BATTERY

由D. S. Halacy,JR。

想要建立生物燃料电池?奇妙的经济,他们是未来的力量

Illustrated on this month’s cover is a radically new kind of power converter called a biocell. To drive the electric motors, it is changing a fuel directly to electricity with no intermediate steps. As with any new system or device, there are “bugs” in the biocell. But engineers are not trying to eliminate all the bugs, or more accurately, the bacteria, because they are generating the electricity. Far past the gimmick stage, a number of more refined biochemical fuel cells, to use their potential as a new power source for the space age. Investigations are under way with a view toward using biocells in the “closed-cycle” of a spacecraft like Apollo to convert waste material into fresh water and food and, at the same time, generate electricity to power radios, radar and telemetry gear, and other on-board auxiliary equipment.

Land-based biocells have powered radio transmitters, driven model boats, and lighted fluorescent tubes. A Navy-sponsored design floats in the sea and generates a multi-watt output. Thus, although the biocell is not yet rolling of the production line for general use, the promise of this newest and most exotic fuel cell seems tremendous.

Up to the present time, man has produced the electricity he uses by mechanical or electrochemical means. Biochemistry now looms as a major producer of power for us, and it is not the science-fiction or Sunday supplement writers but scientists themselves who suggest such “way-out” possibilities as turning the Black Sea into a gigantic “bug battery” to light parts of the country surrounding it. A more modest idea is that of using sewage, garbage, or wastes like those from paper mills to feed bacteria. This not only produces power heretofore untapped; it also gets rid of the waste material much more efficiently than conventional means.

Biocell是否将为每千瓦时生产的工厂产生电力仍有待观察。其中一位先锋开发人员已经预测了这样的富士群岛,并且有一般同意,生物权威将在我们的未来中重要。毕竟,生物化学已经喂养并穿过我们。为什么不让它提供权力?

生物蜂蜜的过去

虽然古老的罗马人甚至意识到生物中的电力,但实际上使用了鱼雷雷鱼的休克治疗精神病患者,但将细菌新陈代谢的想法作为电力电厂的追溯只有大约50年。1912年,一位英国植物学师M. C. Potter,在碳电极周围使用酵母将半同的“细胞”放在一起。原语细菌电池产生了在1.25毫安测量的电流波特。

壮举不会突然出售公用事业股票。其他研究人员以不规则的间隔进行了类似的实验,然而,1931年,美国约翰霍普金斯医学院的Cohen在美国报告的细菌电池上涨到大约2 mA的细菌电池。直到1960年直到1960年,生物蜂蜜的研究进入高齿轮,几个群体同时推动了这个想法。

In his work for the Department of Interior’s Geological Survey, biologist Dr. Frederick Sisler became greatly interested in the fact that decomposition of organic matter on the ocean bottom, plus the chemical and physical conditions in the ocean, led to production of a weak electric current. He began to work toward developing a biocell exploiting this phenomenon.

John Welsh博士及其在Joseph Kaye And Company的伙伴,Cambridge,Massachusetts,Massachusetts,研究公司,所有的燃料电池都有一定的常见分母 - 燃料,加上加速电化学反应的催化剂。由于来自活细胞的酶是催化剂的最终,因此威尔士觉得生物化学可能会达到一百万倍的反应。

第三组加利福尼亚州的Magna Industries,Inc。以环形交叉路口的方式进入了生物片的想法。研究油井和管道下的腐蚀,他们发现细菌是罪魁祸首。他们也发现这些细菌在做脏工作时产生微小的电力。因此,Magna开始调查在更有用的任务中设置这些小型工人的可能性:为海上设备产生电力的可能性。

因此,立即成功的是生物片工作,即1961年的预测,1瓦特细胞是可行的,并且在几年内,无线电可能会随着细菌电量提供动力。这些东西甚至更早地实现了。1962年,Sisler和他的伙伴在一个新成立的私人公司中展示了一个小型发射器,范围为15英里,而且还在生物蜂窝上运行的模型船,将其漂浮的水挖掘。

第一个生物蜂蜜会议于1962年在俄勒冈州Corvallis举行。大约十几家公司在新的领域积极参与,这是由军队,海军,空军和美国宇航局支持的公司资助的研究和工作。只有几年,生物蜂块从实验室试管跳跃到严重的竞争者作为一个新的电源。

How It Works

每一个生物,人,鼠标或微生物都是生化燃料电池。它采用食物或“燃料”,并将物质缩小到较低的形式,在该过程中提取能量。其中一些能量以电力形式出现。Luigi Galvani感兴趣的是他在青蛙中发现的动物电力,但他的乡村人,Volta,用他的Voltaic桩在另一个方向上的电力等学者,这是一个被认为是原装电池的装置。

使两个不同材料的电极,在它们之间进行电解质和电流流动。这是与生物的相同“氧化还原”过程,这些过程将燃料分解为能量和浪费。熟悉作为燃烧的氧化在电池中制造,以推动电路周围的电子。

The battery is a handy device, but expensive. It would be better to be able to “burn” cheaper fuel in it to produce electricity, and in 1839 an Englishman named Grove did just that. His battery used hydrogen gas instead of zinc or other metal as fuel, and was the forerunner of today’s “hydrox” fuel cells. Before the turn of the century other workers had improved Grove’s idea and coined the name “fuel cell”. But another means of generating electricity was making its debut. Called the dynamo, it ushered in the age of the mechanical production of electric power.

由于即使是最有效的涡轮发电机也被热力学的不可控制的定律注定为浪费(Continued on page 103)

In a typical fuel cell, hydrogen is fed to one electrode and oxygen to the other. Separated by an “ion exchange” membrane rather than the liquid or paste electrolyte of the storage battery, the fuel cell produces electricity – and water. This by-product is important on space missions, obviously. In theory, a fuel cell can be 100% efficient. However, some energy is required to excite the molecules to an energy level necessary for the reaction producing current flow, and there is some resistance in the cell. Practically, 75% is a good figure of merit.

With this kind of performance it might be wondered who need batteries made from bugs. But the conventional fuel cell still has drawbacks. Hydrogen and oxygen are expensive, and power densities of fuel cells are rather low even though they are more attractive than regular batteries. A fuel cell that operates on cheap fuel oil is needed and work is going on in this direction. Catalysts to speed up the reaction and cut down the internal loss of power are important. Such things as platinum, and more recently, nickel boride, are being used. Unfortunately, fuel cells using inexpensive hydrocarbon fuels such as natural gas, octane, etc., seem to require expensive catalytic electrodes such as spongy platinum.

该阶段现在设定了细菌电池的进入生化燃料电池。正如威尔士博士和其他人所指出的那样,细菌及其衍生物提供催化剂卓越。它们并不像更多的常规催化剂那样挑剔。实验表明细菌可以制造碳氢化合物燃料电池。更重要的是,生物蜂窝已经显示,它们可以将废料转化为电力。

电子分子在盖上的动作中的生物电池代表了最简单的生物功率类型。利用其铝和铜电极可能似乎是一种电池,使用米壳“载体”作为电解质。但是,如果添加弱酸溶液而不是细菌营养素,则电流仅持续短时间。因此,细菌似乎能够防止偏振或涂覆电极,这使得反应停止。EMR示范细胞已运行超过一年,输出没有减少。

在更复杂的生物蜂口中,阳极和阴极部分通过离子交换“桥”分开,离子漫射以维持电流。细菌置于一个或两个电极,促进剥离电子的过程,其形式的“燃料”提供了它们。

除了更有效的催化作用和使用更便宜的燃料外,生物蜂窝在室温下运行,而不是一些燃料电池所需的高温。它的特征在于生活过程的温和,“天然”条件,中性范围内的pH值和作为电解质的稀水溶液。

Fuel for the biocell varies from sugar to organic sea material, yeast, mushrooms, or urea. The U.S. Bureau of Mines has demonstrated a biocell operating on the inorganic material, pyrite, or fool’s gold. Suggested are such things as grass, dry leaves, sewage, and other waste materials. One of the most interesting biocells was made by Magna researchers, using bacteria at one electrode and algae at the other, with sunshine as fuel! In effect this represented a biological solar battery and offers the intriguing possibility of converting sunlight to electricity more efficiently than the photovoltaic cell.

当然,像传统燃料电池一样,生物蜂窝也不是没有其缺点。紧凑率并不是其优点,因为见证了EMR Do-IT的大部分电池。已经报道了每平方英尺的电极表面的几个安培的密度,这对于许多应用来说是不够的。

生物材料表现出的潜在差异导致轻度反应,典型电池的电压仅为约一半伏特。电池抗性是一个问题,是电池本身的适当形状和尺寸。显然,必须喂细菌“工人”,因此可以喂食一半的可用能量!

尽管对生物电化学现象几乎没有真正了解生物蜂窝,但已经通过生物区获得了成功,似乎表明Biocell的问题是不可逾越的。与利用核融合的力量相比,它们看起来很小,但当然,没有人表明收益会很棒。现在研究人员知道生物片工作;他们想知道如何让它变得更好,并且很好的机会他们会成功。

生物区 - 今天和明天

太空计划是帮助biocell繁荣发展ent. When NASA asked for bids on a project there were 33 responding firms. Contracts have gone to four of them and working systems may be part of manned space vehicles within several years. This is the “Space Oasis” concept, referred to before, with biocells working in conjunction with an algae solar converter in the spaceship’s closed cycle. Magna Corporation, Marquardt Inc., General Electric and Ford’s Aero-nutronic Division are doing such research work for NASA.

在操作中,这种闭环厂将处理废料,为水,食品和电力提供经营无线电和其他辅助设备。作为潜在电源的一个例子,暂定规格描述了一种20瓦尿素燃料电池,每天100个安培的每日输出从一个成员的浪费。

是美国海军项目的更远。Magna生产了船用生物电池的多瓦单位。这些目前仅用于浮标中的动力发射器,但是未来有生物动力船只的表现。总体科学公司还为海军生产了原型单位。

正在研究由常规燃料电池供电的潜水艇,并且可以在这种应用中有可能是有利的。如果模型船已经证实和使用黑海作为电源的提示,可以认真对待,术语“海洋电流”采用完全新的含义!

除了这些方案和其他政府资助的工作之外,生物蜂窝领域还有一些私人赞助的项目,其中一些旨在商业利用新电源。

在土地生物蜂蜜上,可以首先在电力远程电气和电子安装,飞机着陆灯,牧场和农场和农场和类似任务的栅栏充电器中工作。陆军便携式雷达已经成功地在传统的燃料电池和使用生物权力的这些军用齿轮运行。

Later on may come projects like harnessing the energy in sewage, paper mill effluent, and so on. While conventional generating plants are obviously safe for many years to come, developments in biochemistry may eventually lead to low-cost industrial electricity competing in some areas with that produced by fossil fuels.

更容易可预见的是生物蜂蜜是双重工作的过程。已经指出,如果可以将发酵热转换为电力,啤酒厂是潜在的发电厂。同样可能适用于面包店和依赖生物化学行动的其他行业。

The biocell may also prove of great value as a chemical process rather than a power producer. Since the fuel cell can work both ways, electricity might be supplied to the cell and the bacteria furnish useful by-products rather than electricity. Another interesting suggestion is use of the biocell as a detector of germs during possible germ warfare, since a foreign strain of bacteria would adversely affect the electrical output.

传统的燃料电池有一个历史的than 20 years of accelerated development. Even though it is still a long way from perfected, it is considered worthy of spending additional millions toward improvement. Application of the biocell, on the other hand, came just three years ago and it has made amazing progress in that short time.

许多科学家认为,这次尝试利用生物权力,在TE马之前将车推车,并且首先表明了更多年的基本研究。然而,美国宇航局电化学技术项目负责人中的Ernest Cohn指出了化学工业的有趣。虽然论文和论文仍在编写描述氨的生产研究的阶段,但我们仍有过量的化合物的制造能力。

不确定Biocell如何真正有效,科学家和工程师仍然可以使用它。给予20年,它也可能做一些奇妙的事情。同时,您可以将自己的简单生物电池放在一起,观看或倾听,错误 - 权力进入行动!